
White Paper Report

Report ID: 98551

Application Number: HD5000307

Project Director: Michael Newton (msnewton@email.unc.edu)

Institution: Unaffiliated Independent Scholar

Reporting Period: 4/1/2007-5/31/2008

Report Due: 8/31/2008

Date Submitted: 9/15/2010



NEH White Paper
NEH Grant number: HD-50003-07

Finding the Celtic

Project Director: Michael Newton
gaelicmichael@yahoo.com

June 2008

Page 1

mailto:michael@saorsamedia.com
mailto:michael@saorsamedia.com


Summary
Finding the Celtic (hereafter referred to as ‘FtC’) is an experimental online digital humanities collaboratory 
for Celtic Studies produced by modifying and extending the Collex project. Collex has been in development 
in the Applied Research on Patacriticism Lab at the University of Virginia (and applied to Nineteen-
Century Studies as the NINES online collaboratory) since 2006. FtC was funded by a Digital Humanities 
Initiative grant from the National Endowment for the Humanities from May 1, 2007 to April 31, 2008.

FtC enables users to locate, access, and create visual representations of a sample set of scholarly resources 
for Celtic Studies that have been identified on the internet. Social software features enable users to collect 
objects, tag them, view the universe of tags created by other users, and create exhibits from collected objects. 
FtC is hosted by iBiblio at www.celtic.ibiblio.org

The engagement between FtC and the ARP Lab has enhanced the Collex suite of software components 
which comprise the online collaboratory. They are available as Open Source Software which can be 
downloaded from the University of Virginia repository and customized according to the needs of other 
fields.

This document describes the activities, challenges and accomplishments of the project, both from 
technological and institutional points of view.

1. Project Achievements
1.1 Adjusted Goals
By the time that the project was under way, the goal set was defined as:

• To configure and adapt the Collex digital collaboratory to handle data resources related to Celtic 
Studies (i.e., defining the appropriate metadata schema and tailoring the code to handle it).

• To add information visualization extensions to Collex so that the data resources can be visualized in 
graphical representations.

• To compile a sample database of digital resources from the multiple disciplines that intersect at 
Celtic Studies (i.e., literature, history, archaeology, folkloristics, and art history) so as to demonstrate 
the ability of the system to meet the diverse needs of the humanities.

• To stimulate the creation of online resources for Celtic Studies.

1.2 Collex Design
The name Collex derives from the words Collection and Exhibits. It is intended to function as a front-end to 
the Semantic Web for scholars, allowing “users to collect, annotate, and tag online objects and to repurpose 
them in illustrated, interlinked essays or exhibits.”1  The Collex server does not contain primary data 
resources but rather metadata entries about resources available online; its faceted classification system allows 
for highly flexible browsing of data and the folksonomy tagging system allows the user community to add 
value to objects by annotating and labeling them.

FtC was the first attempt to extend Collex technology into a new realm (beyond its initial application to 
Nineteenth-Century Literary Studies). This experience of extended collaboration between the UVA ARP 
Lab and FtC affirmed the effectiveness and desirability of Collex technology, but also revealed how deeply 
code specific to NINES had become embedded in Collex. This process initially resulted in “quarantining” 
code specific to NINES, improving some of the documentation intended to explain its application outside 

Page 2

1 The “About” webpage for the Collex project, at http://www.patacriticism.org/collex/about/ 

http://www.celtic.ibiblio.org
http://www.celtic.ibiblio.org
http://www.patacriticism.org/collex/about/
http://www.patacriticism.org/collex/about/


of the ARP Lab, and creating an initial design for a generalized Collex engine which can serve a domain-
specific client (a design currently in development at UVA). 

The FtC metadata scheme design supports a broad range of data related to Celtic Studies, with particular 
tradeoffs in mind. Sample items in the data base highlight their application to materials relating to a broad 
range of topics in the humanities.

The two primary visualization types — geographical and chronological — provide obvious and useful 
means of organizing data results in graphic format. The software extensions to provide this functionality are 
integrated into the FtC version of Collex so that these techniques can be reused by other projects that wish 
to also provide visualization features.

The rich metadata schema used by FtC enables flexible, multidimensional explorations into the data 
base and advantageous means of visualizing it. A number of useful questions about patterns in the data can 
be asked by parameterizing graphical representations, especially on the Graph page.

1.3 Source Code
The code base for FtC is stored in the UVA ARP Subversion repository and is freely available for download 
at: https://subversion.lib.virginia.edu/repos/patacriticism/collex/branches/ftc 
Technical details about the code (such as versions, dependencies and known bugs) are given in the README 
file in the /web directory.

Details about prerequisite Open Source components, downloading the FtC code base, installation and 
configuration can be found on the UVA ARP Lab Wiki at: http://faustroll.clas.virginia.edu/
ARPwiki/index.php/Main_Page

1.4 FtC Website
In constructing the FtC website I also created webpages to explain the project, describe the metadata schema 
and prescribe system usage, and provide a basic help system for users. This in itself required considerable 
time and effort. The results can be seen online.

2. Design Process and Results
Some preliminary notes on terminology are necessary to understand the discussions that follow. Collex is a 
federated data server,  meaning that it contains metadata about primary data resources contained on other 
servers; in other words, Collex can be conceptualized as containing an index to files stored elsewhere on the 
internet.

The metadata about items are stored in RDF files which are ingested in the Collex system; after they have 
become ingested, these items are often referred to as documents (although I generally adhere to the more 
generic “items”); each document has a number of facets; each facet corresponds to a metadata element in 
the original RDF file.

2.1 Metadata Design
The metadata schema design was as much an exercise in anticipating the functionality of the visualization 
features as identifying the metadata offered by data bases in the present. It was carried out by a committee 
consisting of Carole Crumbley, Elizabeth Jones, Michael Newton, and Dorothy Verkerk. The schema was 
meant to be a significant expansion over the domains represented in NINES and cover a wider range of 
materials from the humanities. The types of items deemed to be important to represent in the data base 
were as follows:

History: Biographical entries, maps, historical events (or periods), and definitions of terms.

Archaeology: Artifacts and sites of archaeological significance.

Art History: Architecture, illuminated manuscripts, and other objects of “art.”

Page 3

https://subversion.lib.virginia.edu/repos/patacriticism/collex/branches/ftc
https://subversion.lib.virginia.edu/repos/patacriticism/collex/branches/ftc
http://faustroll.clas.virginia.edu/ARPwiki/index.php/Main_Page
http://faustroll.clas.virginia.edu/ARPwiki/index.php/Main_Page
http://faustroll.clas.virginia.edu/ARPwiki/index.php/Main_Page
http://faustroll.clas.virginia.edu/ARPwiki/index.php/Main_Page


Literature: Manuscripts, transcriptions, editions, and translations.

Folkloristics: Audio recordings (from folklore fieldwork) and representations of human activities 
(whether in textual, audio or video format).

Each “real-life” entity, whether concrete (such as a building) or conceptual (such as a biographical entry) 
is represented on the computer by a digital surrogate. For example, a manuscript is represented by a digitally 
scanned photograph of the original and the characteristics of this surrogate will be determined by the 
granularity of the image (e.g., number of dots per inch), lighting conditions, digital enhancement 
techniques (e.g., modifying the contrast), and so on. The digital surrogate is not a substitute for the original 
entity and two digital surrogates of the same entity may differ.

The metadata schema was also driven by the features of the system, especially the graphic visualizations. 
A geographical display required a geographical coordinate to be of any use; without such information, the 
extensions would not be usable.

The challenge, then, was to find a minimal metadata schema which would support the essential qualities 
of all of these different item types without cluttering the schema with elements specific to a particular item 
type. A table of the elements, specifying the name of the element, whether or not it is required for every 
entry, whether or not an entry can have multiple values, and its meaning, is given below. Metadata elements 
that were inherited from the Collex schema are underlined. Some discussion of individual items follows.

Element Req’d Multi Meaning

Identifier Yes No Unique identifier for this item

Archive Yes No The name of the archive which contains this item; this enables FtC to exploit 
data stored about specific archives (such as the archive’s home URL).

Title Yes No The human-readable title for this object. It does not need to be unique.

Alternative 
Title

No Yes Alternative names for items; this is useful for providing aliases for items that may 
be known under different names in different linguistic or scholarly traditions, or 
have a special designation (e.g., a library index number).

ItemType Yes No What type of item this is. Must be one of the following: Activity, Architecture, 
Artifact, Audio, Definition, Event, Manuscript, Map, Site, Text

Role No Yes Individuals who have been involved in the creation or transmission of this item in 
all of its manifestations. Discussed further below.

Date Yes Yes The date or date range associated with this item, the exact meaning of which 
depends on the type of artifact.

Period Yes No The period associated with this artifact, the exact meaning of which depends on 
the type of item. Must be one of the following recognized Celtic eras: Hallstatt, La 
Tene, Romano-Celtic, Early Medieval, High Medieval, Late Medieval, Modern.

Country Yes No The two-letter country code for the country (as defined by the boundaries of 
modern nation-states) associated with this item. If no single country is 
appropriate, use code ZZ. (See further discussion below.)

FoundLoc No No The geographical coordinate (in latitude,longitude format) at which the object 
was found (or associated).

Page 4



Element Req’d Multi Meaning

Language No Yes The languages that appear on or in the item. There is a set list of allowable 
language names.

Material Yes Yes The material(s) of which an item is made. If the object exists only in digital form 
(as in items of type Definition, Event, or Site), the value is Digital. Must be one of 
the following values: Digital, Paper, Vellum, Leather, Wood, Stone, Gem, Bronze, 
Copper, Lead, Pewter, Brass, Iron, Silver, Gold, Bone, Textile, Botanical, Glass, 
Ceramic, Human Remains.

Text No No Contains either (1) a short, plain text value, or (2) a URL to a web-accessible, 
plain text file containing the text for the item. In both of these cases, the text 
cannot contain special markup (like XML or other embedded codes). The text is 
used by the Collex search engine for the purposes of indexing.

SeeAlso No No The URL to the webpage associated with this item. This allows a pointer to be 
displayed alongside the item that the user can access.

Thumbnail No No The URL to a web-accessible miniature image of the item (100 x 100 pixels in 
size) to display. If no thumbnail is available, the thumbnail for the archive will be 
displayed; if there is no thumbnail associated with the archive, a generic image 
will be shown.

SourceWork No Yes The title of the larger item of which this item is a component. For example, a 
journal series, an anthology, a manuscript containing many texts, etc.)

Parent No No The Identifier of the “parent” item of which this item is a “child” component. 
They should both belong to the same archive. (Currently unused but expected to 
be used to link items.)

Children No Yes The Identifiers of “children” items that belong to this “parent” component. They 
should both belong to the same archive. (Currently unused but expected to be 
used to link items.)

Relations No Yes The Identifiers of any items related to this item that are not related in a Parent-
Children relationship. For example, different translations of the same original 
text. (Currently unused but expected to be used to link items.)

Table 1: FtC Metadata Schema

There are some metadata elements which ideally should have allowed multiple values, but because of design 
considerations, could not. It was necessary to limit items to having a single country code, for example, in 
order for searches and displays to work in a reasonable manner (see Section 4.4.1 below for more).

The definition and usage of some values have been complicated because of the wide range of times and 
cultural and scholarly traditions the data set attempts to include.

2.1.1 Names
I determined that names (used in the Roles element, and for the Title in the case of biographical entries) 
should be given in the order first name to last name in the language of the person in question. While the 
standard usage in modern English is surname followed by Christian name and middle name, surnames are 
a modern convention that do not hold in earlier periods or even in Celtic languages to the present (to a 

Page 5



large degree). Given that epithets are also common in Celtic names, the use of these are encouraged to 
facilitate disambiguation. Some examples include:

Donnchadh Bàn nan Òran Mac an t-Saoir
Dafydd ap Gwilym
Alasdair mac Mhaighstir Alasdair Domhnallach

2.1.2 Countries
The values of the CountryCode element are also defined in a “non-standard” way. It was deemed important 
to recognize those Celtic cultural zones in existence in the High Medieval period that are nations according 
to traditional usage of the term but have been subsumed within the United Kingdom and France in the 
modern era. This led to the creation of several new CountryCode values (some of which replace previously 
defined countries outside of the Celtic world): BR (Brittany), CN (Cornwall), EN (England), IE (the island 
of Ireland, not just the Republic of Ireland), MN (the Isle of Man), SC (Scotland) and WA (Wales). The 
definition of these discrete countries was deemed important given that they have produced a considerable 
amount of material with distinctive characteristics.

2.1.3 Dates
Although the Date element in FtC works in a similar way to the corresponding element in NINES, it was 
necessary to extend the format given the wide range of dates (c. 2,000 BCE to the present, as opposed to the 
“long” nineteenth century used by NINES). Years before the Common Era are indicated by a negative sign 
(“-”) and ranges expressed with “x”. For example, the date range 100 BCE to AD 100 is represented by 
“-100x100”.

2.1.4 Object Relationships
NINES-Collex had already defined the Parent and Children elements to allow “containment” relationships 
between items to be specified (e.g., articles within journals). I suggested that this concept of containment be 
extended semantically in the FtC metadata schema to allow for specifying location and artifact composition. 
A Site item can be a “parent” to all of the archaeological artifacts that are found there. The hierarchical 
relationships between an item and the subsidiary items of which it is composed — such as composite artifact 
made of many smaller artifacts — are another example. This could also be used to express “lineage” 
relationships, such as a parent Manuscript from which editions of Text items are created.

Although the system does not currently make use of these relationships, it is possible that future versions 
of Collex may allow searching, browsing, and visualization based on such hierarchies, and so defining them 
at an early stage was important.

2.1.5 Roles
NINES-Collex defined the Roles element to specify individuals who were involved in the creation of an item. 
I augmented the usage of this element in two ways: I created the Role:PER specifier to refer to performers or 
tradition-bearers from whom audio or video recordings were made (and whose role is different from that of 
an author or translator). I also extended the usage of the Role:PUB (publisher) specifier to include patrons 
of the arts in the pre-Modern period (whose function was somewhat analogous to that of the modern 
publisher).

2.1.6 Ideas discussed but discarded
It may be of future interest and utility to know about those elements discussed for inclusion but ultimately 
discarded.

Page 6



We discussed a proposed Motif element, given that certain culturally-specific motifs recur in different 
media (text, visual art, etc), but the list was potentially long and difficult to define, and a similar result can 
be provided by users exploiting Collex’s folksonomy tagging feature.

We discussed a proposed SourceType element, which would specify whether the item was a primary, 
secondary, tertiary (bibliographic) or derived (created by computation) resource, but this was deemed 
implicit and unnecessary.

We discussed a proposed SubjectDomain element, which would specify whether the item related to 
Politics, Law, Military, Religion, etc., but determining the value(s) appropriate was cumbersome and 
subjective, each item was likely to have multiple values, and a similar result can be provided by users 
exploiting Collex’s folksonomy tagging.

We discussed a proposed SocialScale element, which would specify the scale at which an item related in 
social terms (Personal, Family, Village, Tribe, Superstate), but this too was likely to be difficult to determine. 

We discussed a proposed RhetoricalMode element which would specify whether an item was expressed 
in the form of Fiction, Criticism, Didactic, Expository, etc., but this category is specific to Text items and 
would be unused for other item types.

Another strike against all of the above proposed elements is that they do not relate to the elements of 
standard metadata schema (e.g., Dublin Core) and hence would require extra human intervention.

2.2 Feature Design
2.2.1 Browsing
The FtC user interface for multifaceted browsing was borrowed directly from NINES-Collex with several 
modifications:

• FtC-specific facets in constraints panel: Because of the embedding of metadata schema-specific code 
in Collex, changing the user interface to handle the FtC metadata schema was non-trivial. Besides 
accounting for the difference in facets (and the differing repository scheme represented by the 
“Resource” facet), translating between the 2-letter CountryCode values and country names was 
deemed a necessary effort for the user experience (i.e., so that the value “IE” was displayed as 
“Ireland”).

• Constraint Display: By (European) convention, readers/users scan visually from left to right; 
accordingly, the display of cause and effect should move from left to right. The constraint set which 
determines the resulting data set was thus reorganized from its original order on NINES; in FtC, the 
range of possible constraints is displayed on the left-hand side, while the currently selected constraint 
set is on the right-hand side. 

• Side Bar: The NINES-specific facets in the (left-hand) side bar were replaced by those of FtC. The  
efforts necessary for this conversion were similar to those for the constraint panel.

• Navigation Bar: New buttons were added to the pre-existing navigation bar to allow the user to move 
between the Collex browser and the new visualization pages.

2.2.2 Settings
It was important to make use of color as a visual dimension to represent information on the graphical 
displays. It is necessary, however, to translate between the enumerated values of facets (such as 
CountryCode) and color values (for example, Ireland corresponds to the color Green). I thought it 
important to allow the user to specify that translation, especially because, in the case of some facets, there 
are not enough color values to cover all facet values. It would be too tedious for the user to have to provide 
that translation for every visualization, so I chose to store it in the record created for the user when s/he 

Page 7



creates an account. I believe that it would be too cumbersome for the translation to occupy the same screen 
space as the visualization itself, so I created a webpage dedicated to allowing the user to specify the 
translation of these values. Default settings are provided to users who are not logged into an account.

2.2.3 Atlas
A geographical display, placing the items resulting from the current constraint selection onto a geographical 
map, was an important visualization type in this project. The current implementation uses GoogleMaps to 
display an icon at the item location and, when the user hovers the cursor above the item, the item title.

2.2.4 Timeline
A chronological display, mapping the items resulting from the current constraint selection on a time chart 
supporting date ranges (a single year is not sufficient), also was an essential visualization type in this project. 
The current implementation uses MIT’s SIMILE-Timeline widget; besides indicating time by the horizontal 
position of the marker/bar, further information can be conveyed by the color of the marker/bar and title 
text. Further textual information can be shown in a pop-up window activated by the user by selecting the 
timeline bar. These visual features can be mapped to either the Country, Period or ItemType facet of the 
items displayed.2  This is a powerful way to convey several facet values simultaneously on the Timeline 
display (although it may be necessary to experiment with value mappings on the Settings page for the results 
to be aesthetically pleasing or quickly comprehensible).

2.2.5 Graph
It was further envisioned that users would be able to create abstract graphs displaying the numeric facet 
values of items. Since there are no item facets that contain numeric data, however, graphs such as X-Y plots 
could not be generated. I decided that the most useful representation, given the current metadata schema, 
would a series of bar graphs displaying the distribution of facet values across two facet “dimensions.”

The user interface allows the user to specify which two facet dimensions are analyzed. The Group By 
dimension (which can be set to ItemType, Country or Period) first divides all resulting items into a groups 
for each value of this facet (each discrete value having its own bar). The Count dimension (which can be set 
to ItemType, Country, Period, Material or Language) creates a separate segment corresponding to each 
discrete value within the group (colored according the Settings page).

This visualization allows for a powerful means of analyzing the distribution of values across the data base 
by creating a graphical representation which is easy to comprehend visually.

2.2.6 Help and User Guide
It was necessary for me to create an entirely new online help system and user guide (including an 
explanation of the metadata schema and guidelines for its use for contributors).

3. Implementation Details
3.1 System Architecture
Collex consists of a set of interoperating Open Source software components. The main functions of the 
system are ingestion (reading RDF files and converting them into an internal representation) and user web 
services.

Page 8

2 Since only one visual item appears per data base item, visual characteristics have to correspond to facets with a single 
value (i.e., facets that don’t require a value or can have multiple values cannot be represented).



RDF File

Ingest/Index 

Process

SOLR / Jetty

Lucene 

Index

Collex

Ruby on Rails

MySQL

User's 

Web 

Browser

Read metadata schema

Write facets

R/W via URLs

R/W facets and tags

R/W user records, tags, exhibits…

Figure 1: Simplified diagram of system components
3.1.1 Ingestion/Indexing
The indexing process is handled by a component dedicated to that task. This component opens RDF files 
located in the specified directory, parses the individual elements of the metadata schema, checks for errors, 
and writes valid data into the Lucene index (via Jetty) as the facets of documents.

In order to handle FtC-specific RDF files, the indexer code (written in Java) had to be rewritten 
significantly to handle a different set of metadata elements, data validation conditions, and date formats. 
The behavior of the Lucene index and the format of the data stored within it is controlled by an XML 
specification file which also had to be modified to specify the data formats used by FtC.

3.1.2 Collex
Collex is the abstract name for the suite of services and libraries that handles URL requests. It relies upon 
the Lucene index to store the facets and user tags, and upon MySQL to manage the other data storage 
needs (a cache for facets and user tags was later added to MySQL as well). Collex is built upon the 
foundations of Ruby on Rails for the framework of web services (mapping URLs to code components, 
AJAX-functionality, etc.).

As Collex evolved in the UVA ARP Lab to address the needs of NINES, there was little incentive to 
separate out what was specific to NINES from the general functionality of the system: explicit names of 
facets were hard-coded throughout Collex for data storage and retrieval, webpage generation, and so on. This 
collaboration represented the first extended opportunity for the ARP Lab to revisit issues dealing with the 
abstraction of Collex services independent of the set of facets specific to a particular application. Our first 
strategy was to identify those code files in which facet names appear, to prevent their propagation as much 
a s p o s s i b l e , a n d t o p a r a m e t e r i z e f a c e t v a l u e s w h e r e ve r p o s s i b l e ( s e e http://

Page 9

http://faustroll.clas.virginia.edu/ARPwiki/index.php/CollexGeneralizationIssues
http://faustroll.clas.virginia.edu/ARPwiki/index.php/CollexGeneralizationIssues


faustroll.clas.virginia.edu/ARPwiki/index.php/CollexGeneralizationIssues). It is 
anticipated that future work to generalize the Collex engine at the ARP Lab may benefit from this process in 
the future as other communities express interest in exploiting the system’s many useful features.

3.2 Visualization Features
3.2.1 Atlas
The Atlas is implemented by a relatively simple Ruby on Rails controller and view that render an HTML 
webpage with an embedded GoogleMaps viewer. The data points for the items on the map are also 
embedded in JavaScript on the webpage that initializes the GoogleMaps viewer.

In comparison to the complexities of installing and configuring a dedicated geoserver, GoogleMaps are a 
simple and light-weight means of providing online maps that does not burden the Collex server. All that 
anyone who wishes to reuse the FtC code needs to do is to obtain their own Google key and insert it into 
the atlas view (in web/app/views/layouts/atlas.rhtml).

3.2.2 Timeline
The Timeline is implemented by a relatively simple controller and view that calls the Timeline widget 
provided as Open Source software by the MIT SIMILE project (http://simile.mit.edu/). Because the 
Timeline widget is not implemented on an independent, external web server, the data for the display is 
provided by means of a Collex web service which outputs data in XML format.

3.2.3 Graph
The Graph is implemented by use of the Gruff graphing library (see http://gruff.rubyforge.org/) 
which in turn requires that ImageMagick and RMagick be installed on the Collex server. I chose Gruff 
because it is written in Ruby, has a simple API (Application Program Interface), and produces elegant visual 
displays of several types.

Unfortunately, the Gruff code had errors which I had to debug and remedy myself, perhaps due to 
characteristics of the data not common in other applications. This necessitates incorporating the modified 
Gruff code into the FtC code base in the Subversion code repository.

4. Challenges, Difficulties, and Successes
The following sections discuss some of the challenges and difficulties experienced during the course of the 
project, as well as some of the accomplishments of the project. This discussion is meant to explain why 
certain decisions were made, particularly in the hopes of informing future work of a similar nature.

Certainly one of the greatest hurdles to overcome was the time necessary to become conversant with a 
number of new tools and technologies: Subversion (the code repository system), Lucene (especially the 
configuration files), the Ruby programming language, the Ruby on Rails framework, and the Aptana 
integrated development environment were all new to me and progress required at least a modicum of 
acquaintance, and sometimes much more, for project development. 

There were a number of other complicating factors, however, that were much more difficult to control.

4.1 Institutional Difficulties
4.1.1 Communications
I often found it awkward to be working remotely with code still under development for which 
documentation was scarce. Programmers at the UVA ARP Lab work in close contact with one another and 
did not have other pressing reasons for keeping external web resources updated. Although the ARP Lab has 
a Wiki for the purposes of documentation (see http://faustroll.clas.virginia.edu/ARPwiki/

Page 10

http://faustroll.clas.virginia.edu/ARPwiki/index.php/CollexGeneralizationIssues
http://faustroll.clas.virginia.edu/ARPwiki/index.php/CollexGeneralizationIssues
http://simile.mit.edu
http://simile.mit.edu
http://gruff.rubyforge.org
http://gruff.rubyforge.org
http://faustroll.clas.virginia.edu/ARPwiki/index.php/Main_Page
http://faustroll.clas.virginia.edu/ARPwiki/index.php/Main_Page


index.php/Main_Page), it did not always reflect the current state of the code or lab practices. The visits 
I made in person were therefore of immense value to me. 

4.1.2 Data collaboration
I spent a great deal of time initiating contact with online data holders in the hopes of getting contributions 
of metadata (in the form of RDF files). I am currently in discussions with the Digital Library of Core 
Materials on Ireland project based at the University of California, Berkley (http://www.jisc.ac.uk/
whatwedo/programmes/programme_digitisation/ireland.aspx) about receiving metadata 
contributions from their work. A few other institutions are interested in principle and may be able to make 
contributions in the future. Many of my efforts, however, proved ultimately unsuccessful for a number of 
reasons: a lack of response to communications, a lack of personnel or resources to carry out the necessary 
processes, or a lack of the appropriate technology (e.g., persistent and unique URLs, which are of vital 
importance for Collex, are not used by some digital repositories).

4.2 Design and Conceptual Difficulties
4.2.1 Code stability
Unravelling the Collex code once and modifying it to handle FtC specifications would have been challenging 
enough; as it happened, the Collex code and design has been constantly in flux and went through several 
significant transformations during the time in which I was working on FtC, including a renovation of the 
Lucene technology, the creation of the Exhibit Builder, the creation of a caching system, and an update of 
the Collex code for Ruby on Rails 1.2.6 (updated from 1.2.3). Of course, given the speed at which computer 
technology moves, no code base can expect to be stable for any great length of time without becoming 
obsolete.

4.2.2 Multiple code bases
NINES-Collex and FtC-Collex were split into two independent branches of the Subversion code repository; 
whenever significant updates to NINES-Collex were made, I copied them into a directory on my 
development computer and then selectively merged relevant portions into the FtC-Collex code base, making 
modifications for FtC-specific cases when necessary. The process of updating and merging code was 
laborious and time-consuming but necessary, given the differences between the applications.

4.2.3 Documentation
The pace of my work on the software, especially in the early stages, was also slowed down by insufficient 
documentation regarding aspects of Collex or the software related to it. Documentation was sometimes 
created after I requested it.

Programmers may feel that times does not allow them to document their code in detail, or that good 
name choices make their code “self-documenting,” or that the use of their code (whether by test units or the 
application itself) is documentation enough; a newcomer to the internals of the software (as well as the 
language itself) may feel otherwise. The shortage of documentation also left me to resort to pleas for help 
over email and increased the strain on their resources available to me.

4.2.4 Proprietary metadata design
The FtC metadata schema was designed with visualization extensions to Collex in mind, as well as particular 
ways of classifying and analyzing the data which are specific to Celtic Studies and not part of the standard 
Dublin Core Metadata Initiative. This sets a “high-bar” for entry into the system, requiring human 
intervention, a sophisticated automated procedure, or the elimination of potentially useful facets. The 
LongLat element, for example, is required in order to place an item on the Atlas, but is missing for many 

Page 11

http://faustroll.clas.virginia.edu/ARPwiki/index.php/Main_Page
http://faustroll.clas.virginia.edu/ARPwiki/index.php/Main_Page
http://www.jisc.ac.uk/whatwedo/programmes/programme_digitisation/ireland.aspx
http://www.jisc.ac.uk/whatwedo/programmes/programme_digitisation/ireland.aspx
http://www.jisc.ac.uk/whatwedo/programmes/programme_digitisation/ireland.aspx
http://www.jisc.ac.uk/whatwedo/programmes/programme_digitisation/ireland.aspx


collection items; the Period code, which defines early historical eras according to developments specific to 
Celtic art, is not a standard used outside of Celtic Studies (although it can be easily calculated from a date).

4.3 Technological Difficulties
4.3.1 Multiple environments
I did my development work on a Mac OS X computer but deployed the system on a iBiblio host which runs 
Red Hat Linux. The various components of Collex are able to run in these different computer 
environments, but they did not always do so consistently. 

The most vexing of the problems I encountered related to the support of UTF-8 characters. Supporting 
non-standard ASCII characters is crucial because of the needs of languages other than English, particular 
Celtic languages with vowels with length marks. Texts needed to be able to be created on one computer and 
transferred to another with consistent results. Unfortunately, despite considerable time spent by several 
people, there were problems with the use of UTF-8 encoded files that could not be resolved. One result was 
that the facet value “La Tène” (standard spelling) had to be changed to “La Tene” to avoid the use of UTF-8 
character encodings.

4.3.2 Version dependency
During the course of development several problems occurred because code was written to operate on or 
with a version of the operating system, programming language, programming environment, or code library 
other than what was loaded. Such dependencies ought to be stated explicitly and clearly in the 
documentation where all users can check for prerequisite conditions.

For example, the version of the Mongrel server loaded on iBiblio was unreliable in its rendering of 
HTML pages on Linux, a problem that did not happen for the same code on Mac OS X. This was probably 
due to dependency problems (the problem has gone away after upgrading the operating system and the 
relevant server components).

In the fourth quarter I upgraded the operating system on my development computer to Mac OS X 5 
(Leopard), which caused a number of items to crash, unexpectedly costing me over a week of development. 
As I did this upgrade before other members of the ARP Lab and some of my problems were specific to FtC 
(i.e., RMagick would not compile), I had to spend time solving these problems on my own.

Large software projects are typically compromised of a set of components created independently. These 
linkages create a complex set of interdependencies that can be easily broken if unstated conditions about 
one component in this chain of dependencies do not hold true (e.g., a library relies upon a particular 
version of another library). When bugs occur, they can appear far from the source of the problem and be 
hard to trace.

4.3.3 Open Source software reliability
The Open Source software movement has been a great boon to many communities in many ways, but the 
quality of software code is not of uniform standard. Users have to be able to provide their own technical 
support for Open Source software, which can entail configuration or modification at many levels of detail 
and expertise.

For example, the Gruff graphing package was ideal in many ways, but it had logic bugs that appeared in 
my application. It was necessary for me to debug and modify the code. It was advantageous to be able to 
exploit the Gruff code base rather than writing my own graphing library from scratch, but I did not expect 
to have to concern myself with its inner workings.

4.3.4 Debugging
Debugging code in a multi-tiered (or server-client) architecture is convoluted and thorny. There are multiple 
layers of interaction between various components outside the Collex engine, such as when GoogleMaps are 

Page 12



involved. The rationale for embedding the data points in JavaScript on the Atlas webpage (explicitly creating 
GMarkers for each item) illustrates some of these points. The Collex server can determine the identity of the 
user by reading the session id (stored in a cookie accessible to the user’s web browser); this links user 
identity to session variables, which in turn allows the server to retrieve the current constraint set (saved in 
the session variables) and resulting items.

The preferred solution for serving geographical data would have been to create a URL on the webpage to 
pass to GoogleMaps which would in turn request a “geodata” service from Collex. That design was not 
possible, however, given that the item set (resulting from the current constraint set) is specific to the user 
session and user session variables are not visible to the GoogleMaps server (nor would it be safe to pass the 
session id over the internet). This scenario is depicted in the illustration below.

Web 

Browser
CollexGet Atlas webpageStep 1

Web 

Browser
Collex

Return webpage

containing GoogleMaps viewer

and URL for Collex geoservice
Step 2

Web 

BrowserStep 3
Google

Maps

Request containing URL

for Collex geoservice

Step 4 Collex
Google

Maps

URL for Collex geoservice

invoked

Figure 2: Web requests in a flawed geoservice scenario

At the point at which the Collex geoservice would try to serve the request issued at Step 4 above (and 
create XML-formatted KML data), it would not be able to connect the request with any user session and 
corresponding item set. While this may seem to be a trivial point, it underscores the complexity of making 
independent components operate over the internet in a secure fashion. Determining the source of such 
problems when so many features seem to be provided “invisibly” by Ruby on Rails actually took me 
considerable time.

4.4 Design Idiosyncracies
Metadata design inevitably involves choosing the appropriate set of tradeoffs. These tradeoffs need to be 
understood by those creating metadata for FtC-Collex, using the system in a sophisticated way, or considering 
their own design.

4.4.1 Range overspill
The Period and CountryCode elements are required in every metadata entry; each can have only one value 
(for reasons explained in section 3). While this does not present a problem for most items there are several 
types of items for which this is problematic, such as items whose date range spans multiple periods (such as 
definitions of terms or concepts with great longevity, archaeological sites in use for a very wide span of 
time), or items that belong to multiple countries or none specifically (such as definitions of Common Celtic 

Page 13



terms which were current in any countries in which Celtic languages were spoken). I have suggested several 
strategies to address these shortcomings, none of which is entirely satisfactory:

• No country code: the code ZZ can be used to indicate that the item is not associated with any 
specific country.

• Multiple representative: define one item for each relevant period or country.
• The essential representative: define the item according to the characteristics most representative or 

“essential” to our understanding of it, or according to its formative period or location.

4.4.2 Archetypes and Variations
Textual items present challenges: there are inherent complexities in representing items from a literary 
tradition3 with a long history of transmission, recension, variation, edition, and translation. While scholars 
may speak of a particular tale such as Táin Bó Cuailgne, for example, it gets recorded in many variants over a 
long period of time: it may be written in a number of manuscripts in different recensions; editors may 
create diplomatic editions of these texts; translators may render these editions into languages other than the 
original; and so on. The idea of the Táin Bó Cuailgne — a narrative with a particular plot and set of 
characters, motifs, settings, and so on — is distinct from the many different forms in which it can be 
manifested, each of which can be distinct from the others.

I have suggested one solution for dealing with this. An item can be defined and represented in 
“archetypal” form by an entry whose ItemType is Definition, and whose other elements (such as Date, 
Period, Country, and Language) represent the hypothetical “ur-text” of the abstracted form of the item. Each 
edition of the item can be represented by an entry whose ItemType is Text and whose Date, Period and Role 
elements reflect the work of each performer, editor, or translator. This scheme allows for the existence of 
multiple editions and translations — clearly an unceasing activity of literary scholarship — independent of 
the original narrative abstraction. It also recognizes that a modern edition of an older text is an entity in its 
own right and a product of a particular individual, time, place, and methodology.

5. Future Research and Development
5.1 Collex Generalization
The UVA ARP Lab programmers are currently working on issues of generalization for Collex. This 
collaboration has been highly beneficial in highlighting the embedded NINES code in Collex and the need 
to remove domain-specific information. This development work is still underway.

It should be pointed out that the visualization extensions I have developed are specific to FtC: that is, 
they check explicitly for particular facets and facet values. It would be desirable for a generalizable Collex 
engine to incorporate the visualization extensions and allow them to be generalized in a consistent and 
similar manner.

5.2 Internal referentiality
An unexpected complexity emerged from the representation of textual items: while each entity in the Collex 
data base must be represented by a single set of metadata values, texts contain references to entities which 
are not captured by the metadata for the item itself but which the user may wish to locate or ascertain.4

Page 14

3 These issues exist whether the medium of the literary tradition is oral or written. Oral narratives, for example, are 
identified by entries in the Aarne-Thompson Tale Type Index but exist as a number of different eco-types in different 
contexts and many different variants when recorded in specific performances.

4 Collex does support full-text search, which can identify any textual phrases contained within the item, but this does 
not exploit any of the browsing or visualization features that function on basis of the metadata itself.



For example, a modern article of literary criticism written in the year 1990 in Wales may have as its 
subject an Irish medieval text; there is nothing in the metadata for the article that links it to the item(s) it 
references or discusses.

While Collex was not meant to “look inside” of an item (beyond textual search), and while users can tag 
the item with labels that indicate such references, future research may wish to analyze the content of textual 
items (which has repercussions for search, representation and user interaction). The Perseus project has 
been developing tools that parse texts and look for named entities (such as people and places) which are 
related to this same issue (see for example http://www.dlib.org/dlib/july00/crane/07crane.html). I 
understand that the Digital Library of Core Materials on Ireland project is also planning to address this 
issue.

6. Recommendations
There are formidable technological challenges which still confront any digital humanist wishing to make use 
of the latest computer-based tools. Despite certain areas of progress, the complex networks and chains of 
dependencies between software components and the contexts in which they operate can create debugging 
nightmares for all but the most seasoned system administrators and deter digital humanists from their goals.

The NEH can play an influential role in promoting and maintaining high standards in the software 
development which they fund; promoting high standards can increase the payback to many communities 
and users of software and its products. Documentation of code is an under-valued but highly important 
activity that can have a marked impact on those communities that wish to make later use of software 
resources. The software development process often neglects to allocate sufficient time and resources to the 
parallel creation and maintenance of documentation.

Scholarly appraisal of the human costs of software development has recognized for decades the 
importance of clear design and explicit documentation, but I would like to highlight several aspects of this 
project (shared by others of a similar nature) which made programming and debugging without full 
documentation particularly vexing:

• Non-typed Objects: In a typed object-oriented programming languages (such as Java) the types of 
parameters passed to methods/functions is clearly defined. Ruby takes pride in being non-typed; 
while this allows for run-time dynamism and flexibility, it makes deciphering and debugging code 
without explanatory text much more elusive.
• Multiple-technology interaction: The current generation of web-based user interfaces relies upon 
several discrete but interacting technologies which rely upon one another. For example, the web-
page is rendered with HTML and CSS but uses Javascript for interactivity, which also interacts with 
Ruby on Rails code on the server.
• Multi-tiered message-passing: Web-based services essentially work by passing messages between 
different systems: the user (using a web-browser) requests an item from the web-server, which may 
make a request from another service, or return an HTML page to the user with embedded service 
requests, and so on. The repercussion on design and debugging is that software is asynchronous 
and the flow of control is no longer a simple linear sequence.
• Non-linear code invocation: Software that operates as a web-based service is invoked by specific 
patterns in URLs; the software may itself generate URLs to indirectly invoke other code far 
removed from it. This adds to the complexity of predicting and analyzing the flow of control.

I would like to suggest that documentation can help to address the complexities listed above by including 
the following information, at appropriate levels of granularity.

Page 15

http://www.dlib.org/dlib/july00/crane/07crane.html
http://www.dlib.org/dlib/july00/crane/07crane.html


6.1 Object / Component / Unit
At the highest level of granularity, documentation could include:

• Date created and last updated, current version id number
• What language and environment (including version information) this code is written to run in
• What objects/components/units this code is dependent upon (including version information)
• How this object/component/unit gets invoked and by whom

For example, a Ruby object might begin with the following documentation block:
## Atlas Model 1.3
## 2008/02/03: Created by Michael Newton
## 2008/02/13: Added use of SortObject
##
## Written in Ruby 1.8 for Ruby on Rails 1.2.6
## Dependent on SortObject (version 1.4), gruff (version 0.1.2)
## Invoked by URLs generated on Collex search page (by link_to)

6.2 Method / Function / Procedure
At the level of individual methods / functions / procedures, documentation at the top of each could 
include:

• Purpose of method/function/procedure
• Input parameters: what they are and what they should include
• Return value(s): type and contents
• Side effects: any changes to variables other than input/output
• How this method/function/procedure gets invoked and by whom

For example, a method for a Ruby object might begin with the following documentation block:
## GetXML: Called to create XML output used by GoogleMaps
## Input:    <opts> hash of optional tags; keys are facet names
## Returns:  stream in XML format, or “”
## SideFX:   <num_objs> in Atlas class is updated

An action in a Ruby on Rails controller might begin with the following documentation block:
## GetXML: Called to create XML output used by GoogleMaps
## Input:    <params[id]> is the id of the object to render in XML
##           <params[max_size]> integer [1..20] which sets limit on size
## Returns:  stream in XML format
## SideFX:   <session[:num_objs]> is updated
## InvokedBy:URL generated by Atlas#page which embeds object id

Page 16


